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Computing Euler Angles from Direction Cosines 
William Premerlani 

 

Axis conventions 
To describe the motion of an airplane it is necessary to define a suitable 

coordinate system. For most problems dealing with aircraft motion, two 
coordinate systems are used. One coordinate system is fixed to the earth and 
may be considered for the purpose of aircraft motion analysis to be an inertial 
coordinate system. The other coordinate system is fixed to the airplane and is 
referred to as a body coordinate system. Figure 1 shows the two right-handed 
coordinate systems. 

xe 

ye 

ze 

xb 

yb 

zb 

φ 

θ 

φ 

θ 

ψ 

ψ 

 
Figure 1 Body fixed frame and earth fixed frame 

The orientation of the airplane is often described by three consecutive 
rotations, whose order is important. The angular rotations are called the Euler 
angles. The orientation of the body frame with respect to the fixed earth frame 
can be determined in the following manner. Imagine the airplane to be 
positioned so that the body axis system is parallel to the fixed frame and then 
apply the following rotations: 

1. Rotate the body about its zb axis through the yaw angle ψ 

2. Rotate the body about its yb axis through the pitch angle θ  

3. Rotate the body about its xb axis through the roll angle φ  
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Figure 2 Body axes coordinate system 

Direction cosine matrices 
Certain types of vectors, such as directions, velocities, accelerations, and 

translations, (movements) can be transformed between rotated reference 
frames with a 3X3 matrix. We are interested in the plane frame of reference 
and the ground frame of reference. It is possible to rotate vectors by 
multiplying them by a matrix of direction cosines: 
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 Eqn. 1  

The relation between the direction cosine matrix and Euler angles is: 
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  Eqn. 2 
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Equation 1 and equation 2 express how to rotate a vector measured in the 
frame of reference of the plane to the frame of reference of the ground. 
Equation 1 is expressed in terms of direction cosines. Equation 2 is 
expressed in terms of Euler angles. 

If we have the full direction cosine matrix, we can convert to Euler angles 
from the last row and the first column of the matrix: 
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  Eqn. 3 

The pitch angle is between -90 degrees and +90 degrees. Note that we 
must use atan2 in order to get a four quadrant result. Finally, note that the 
atan2 function takes its arguments as (y,x), not (x,y). That often leads to 
confusion. 

Some people have run into problems in trying to apply equation 3 to 
computing Euler angles using the direction cosines that are computed by the 
firmware, such as MatrixPilot, that runs on the UAV DevBoard. 

The main problem is that the UAV DevBoard does not use the coordinate 
system shown in figures 1 and 2. Instead, the UAV DevBoard uses yb where 
xb is in Figure 2, and it uses –xb where yb is in Figure 2. The reason for that 
is historical: the axis labels were placed on the board to align with the axes of 
the three axis accelerometer chip. Later, we discovered that was not the 
convention, but by then it was too late. The relationship between the direction 
cosines used in the UAV DevBoard, and the ones given in Equation 1 and 
Equation 2 is: 
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So, in terms of the elements of the array rmat[], the Euler angles are given 
by: 
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  Eqn. 5 

By the way, the latest versions of MatrixPilot offer the option of including 
Euler angles in telemetry output, and it uses a clever way of doing the 
computations of equation 5. First, a highly efficient CORDIC method is used 
to compute atan2. Furthermore, the arcsin computation is avoided all 
together, because one of the byproducts of the CORDIC atan2 is the 
production of the square root of the sum of the squares of the x and y 
arguments. So, the calculation proceeds as follows: 
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  Eqn. 6 

Also note in equation 6 that it is not necessary to take into account the 
scaling of the representation of the rmat[] elements. That is because atan2 
gives you the same result if you scale both of its arguments by the same 
factor. 

Here is the actual code: 
  

matrix_accum.x = rmat[8] ; 
 matrix_accum.y = -rmat[6] ; 
 earth_roll = rect_to_polar(&matrix_accum) ;     
  
 matrix_accum.y = -rmat[7] ; 
 earth_pitch = rect_to_polar(&matrix_accum) ;     
  
 matrix_accum.x = rmat[4] ; 
 matrix_accum.y = -rmat[1] ; 
 earth_yaw = rect_to_polar(&matrix_accum) ; 

 
The variable matrix_accum is a structure with a y component and an x 

component. rmat[1,4,6,7,8] are values of the direction cosines used in the 
firmware. The routine rect_to_polar converts from x and y coordinates into 
magnitude and angle. The structure is passed in by address so that it can be 
modified. The routine rect_to_polar returns the angle of x and y. In the 
process of the calculation, the y coordinate is driven to zero, and the x 
coordinate becomes the magnitude. 
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